Coin Change Problem using Dynamic Programming
The Coin Change Problem is a classic algorithmic problem that aims to find the number of ways to make change for a given amount using a specific set of coin denominations.
Problem Statementβ
Given a set of coins with different denominations and a total amount of money, determine the number of unique ways to make change for the given amount using any combination of coins.
Intuitionβ
The problem can be efficiently solved using dynamic programming. By breaking down the problem into smaller subproblems and storing the results, dynamic programming helps avoid redundant calculations.
Dynamic Programming Approachβ
Using dynamic programming, we build a table dp
where dp[i][j]
represents the number of ways to make change for amount j
using the first i
coins.
Pseudocode for Coin Change Problem using DPβ
Initialize:β
dp[0][j] = 1 // Base case: one way to make change for amount 0
dp[i][0] = 1 // Base case: one way to make change for any amount using 0 coins
for i from 1 to n:
for j from 1 to amount:
if coins[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = dp[i-1][j] + dp[i][j-coins[i-1]]
return dp[n][amount]
Example Output:β
Given the coins [1, 2, 5]
and the amount amount = 5
, the number of ways to make change is 4
.
Output Explanation:β
- There are four ways to make change for the amount
5
using the coins[1, 2, 5]
:[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 2, 2]
[5]
Implementing Coin Change using DPβ
Python Implementationβ
def coin_change(coins, amount):
n = len(coins)
dp = [[0] * (amount + 1) for _ in range(n + 1)]
for i in range(n + 1):
dp[i][0] = 1
for i in range(1, n + 1):
for j in range(1, amount + 1):
if coins[i - 1] > j:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]]
return dp[n][amount]
coins = [1, 2, 5]
amount = 5
print("Number of ways to make change:", coin_change(coins, amount))
Java Implementationβ
public class CoinChange {
public static int coinChange(int[] coins, int amount) {
int n = coins.length;
int[][] dp = new int[n + 1][amount + 1];
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= amount; j++) {
if (coins[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]];
}
}
}
return dp[n][amount];
}
public static void main(String[] args) {
int[] coins = {1, 2, 5};
int amount = 5;
System.out.println("Number of ways to make change: " + coinChange(coins, amount));
}
}
C++ Implementationβ
#include <iostream>
#include <vector>
using namespace std;
int coinChange(vector<int>& coins, int amount) {
int n = coins.size();
vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= amount; j++) {
if (coins[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]];
}
}
}
return dp[n][amount];
}
int main() {
vector<int> coins = {1, 2, 5};
int amount = 5;
cout << "Number of ways to make change: " << coinChange(coins, amount) << endl;
return 0;
}
JavaScript Implementationβ
function coinChange(coins, amount) {
let n = coins.length;
let dp = new Array(n + 1).fill(0).map(() => new Array(amount + 1).fill(0));
for (let i = 0; i <= n; i++) {
dp[i][0] = 1;
}
for (let i = 1; i <= n; i++) {
for (let j = 1; j <= amount; j++) {
if (coins[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]];
}
}
}
return dp[n][amount];
}
let coins = [1, 2, 5];
let amount = 5;
console.log("Number of ways to make change:", coinChange(coins, amount));
Complexity Analysisβ
- Time Complexity: , where n is the number of coins and amount is the given amount.
- Space Complexity: , for the DP table.
Conclusionβ
Dynamic programming offers an efficient solution to the Coin Change Problem by breaking it down into subproblems and storing intermediate results. This technique helps determine the number of ways to make change for a given amount using a specific